An Arabidopsis mutant defective in the general phenylpropanoid pathway.

نویسندگان

  • C C Chapple
  • T Vogt
  • B E Ellis
  • C R Somerville
چکیده

Mutants of Arabidopsis deficient in a major leaf phenylpropanoid ester, 2-O-sinapoyl-L-malate, were identified by thin-layer chromatographic screening of methanolic leaf extracts from several thousand mutagenized plants. Mutations at a locus designated SIN1 also eliminate accumulation of the sinapic acid esters characteristic of seed tissues. Because of increased transparency to UV light, the sin1 mutants exhibit a characteristic red fluorescence under UV light, whereas wild-type plants have a blue-green appearance due to the fluorescence of sinapoyl malate in the upper epidermis. As determined by in vivo radiotracer feeding experiments, precursor supplementation studies, and enzymatic assays, the defect in the sin1 mutants appears to block the conversion of ferulate to 5-hydroxyferulate in the general phenylpropanoid pathway. As a result, the lignin of the mutant lacks the sinapic acid-derived components typical of wild-type lignin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes.

The Arabidopsis ref2 mutant was identified in a screen for plants having altered fluorescence under UV light. Characterization of the ref2 mutants showed that they contained reduced levels of a number of phenylpropanoid pathway-derived products: sinapoylmalate in leaves, sinapoylcholine in seeds, and syringyl lignin in stems. Surprisingly, positional cloning of the REF2 locus revealed that it e...

متن کامل

Identification and Functional Characterization of Arabidopsis icl Mutant Under Trehalose Feeding in Light and Dark Conditions

Trehalose is a non-reducing sugar that plays an important role in plant growth and development. To study the role of trehalose on lipid metabolism and gluconeogenesis, Arabidopsis thaliana wild type (WT) and TreF (a line expressing trehalase) were grown on ½ MS medium with or without 100 mM sucrose and or trehalose in light or continuous darkness. In dark, trehalose leads skotomorphoge...

متن کامل

Chemically induced conditional rescue of the reduced epidermal fluorescence8 mutant of Arabidopsis reveals rapid restoration of growth and selective turnover of secondary metabolite pools.

The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3'-hydroxylase (C3'H), exhibits severe dwarfism and sterility. To better understand the imp...

متن کامل

Nematode infection and reproduction in transgenic and mutant Arabidopsis and tobacco with an altered phenylpropanoid metabolism.

Transgenic and mutant Arabidopsis and tobacco plants with altered phenylpropanoid metabolism were infected with the plant parasitic root knot nematode Meloidogyne incognita to assess the effect of the transgene or mutation on nematode infection and reproduction. Modifications in the lignin biosynthetic pathway which alter lignin composition in roots affected reproduction. In Arabidopsis with in...

متن کامل

Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana.

Plants produce an array of metabolites (including lignin monomers and soluble UV-protective metabolites) from phenylalanine through the phenylpropanoid biosynthetic pathway. A subset of plants, including many related to Arabidopsis thaliana, synthesizes glucosinolates, nitrogen- and sulfur-containing secondary metabolites that serve as components of a plant defense system that deters herbivores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 4 11  شماره 

صفحات  -

تاریخ انتشار 1992